Extensions 1→N→G→Q→1 with N=C2 and Q=C42⋊C4

Direct product G=N×Q with N=C2 and Q=C42⋊C4
dρLabelID
C2×C42⋊C416C2xC4^2:C4128,856


Non-split extensions G=N.Q with N=C2 and Q=C42⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C42⋊C4) = (C2×D4)⋊C8central extension (φ=1)32C2.1(C4^2:C4)128,50
C2.2(C42⋊C4) = C423C8central extension (φ=1)32C2.2(C4^2:C4)128,57
C2.3(C42⋊C4) = C24.6D4central extension (φ=1)32C2.3(C4^2:C4)128,125
C2.4(C42⋊C4) = C24.D4central stem extension (φ=1)16C2.4(C4^2:C4)128,75
C2.5(C42⋊C4) = C24.4D4central stem extension (φ=1)32C2.5(C4^2:C4)128,84
C2.6(C42⋊C4) = C8⋊C4⋊C4central stem extension (φ=1)168+C2.6(C4^2:C4)128,138
C2.7(C42⋊C4) = (C2×D4).D4central stem extension (φ=1)328-C2.7(C4^2:C4)128,139
C2.8(C42⋊C4) = C41D4⋊C4central stem extension (φ=1)164+C2.8(C4^2:C4)128,140
C2.9(C42⋊C4) = (C4×C8)⋊6C4central stem extension (φ=1)164C2.9(C4^2:C4)128,141
C2.10(C42⋊C4) = (C4×C8).C4central stem extension (φ=1)164C2.10(C4^2:C4)128,142
C2.11(C42⋊C4) = (C2×Q8).D4central stem extension (φ=1)324-C2.11(C4^2:C4)128,143

׿
×
𝔽